Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C322Q8

Direct product G=N×Q with N=C2 and Q=C2×C322Q8
dρLabelID
C22×C322Q896C2^2xC3^2:2Q8288,975


Non-split extensions G=N.Q with N=C2 and Q=C2×C322Q8
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C322Q8) = C4×C322Q8central extension (φ=1)96C2.1(C2xC3^2:2Q8)288,565
C2.2(C2×C322Q8) = C2×Dic3⋊Dic3central extension (φ=1)96C2.2(C2xC3^2:2Q8)288,613
C2.3(C2×C322Q8) = C2×C62.C22central extension (φ=1)96C2.3(C2xC3^2:2Q8)288,615
C2.4(C2×C322Q8) = C62.39C23central stem extension (φ=1)96C2.4(C2xC3^2:2Q8)288,517
C2.5(C2×C322Q8) = C62.42C23central stem extension (φ=1)96C2.5(C2xC3^2:2Q8)288,520
C2.6(C2×C322Q8) = C123Dic6central stem extension (φ=1)96C2.6(C2xC3^2:2Q8)288,566
C2.7(C2×C322Q8) = C12⋊Dic6central stem extension (φ=1)96C2.7(C2xC3^2:2Q8)288,567
C2.8(C2×C322Q8) = C623Q8central stem extension (φ=1)48C2.8(C2xC3^2:2Q8)288,612
C2.9(C2×C322Q8) = C624Q8central stem extension (φ=1)48C2.9(C2xC3^2:2Q8)288,630

׿
×
𝔽